AQA Combined Science & Chemistry.

Unit 4: Chemical Changes

Year: 10

	Reactivity of Metals		
1.	Metal + oxygen →	metal oxide	
2.	Metal + water $ ightarrow$	metal hydroxide + hydrogen	
3.	Metal + acid \rightarrow	salt + hydrogen	
4.	Oxidation	gain of oxygen	
5.	Reduction	loss of oxygen	
6.	Order of Reactivity of metals	potassium, sodium, lithium, calcium, magnesium,	
		zinc, iron, copper	
7.	Displacement reaction	a more reactive element takes the place of a less	
		reactive element	

	Reactions of metals with Water		
8.	Potassium with water	melts into a ball, fizzes and burns with a lilac flame	
9.	Sodium with water	melts into a ball and fizzes	
10.	Lithium with water	fizzes	
11.	Copper with water	no reaction	

	Oxidation and Reduction (HT only)		
12.	Oxidation	loss of electrons	
13.	Reduction	gain of electrons	
14.	Redox Reaction	reaction involving loss or gain of electrons	
15.	Half Equation	shows how electrons are lost or gained	

	Neutralisation Reactions		
16.	Alkali	a soluble base	
17.	Acid + Alkali →	salt + water	
18.	Acid + Metal oxide →	salt + water	
19.	Acid + Metal hydroxide $ ightarrow$	salt + water	
20.	Acid + Metal Carbonate $ ightarrow$	salt + water + carbon dioxide	
21.	Reactions with	produce chlorides	
	hydrochloric acid		
22.	Reactions with sulfuric acid	produce sulfates	
23.	Reactions with nitric acid	produce nitrates	

RP: How to make a salt	
24. Process of making a	i) choose correct acid and insoluble base
salt	ii) add the solid to the acid until no more dissolves
	iii) filter the excess
	iv) crystalise

T	The pH Scale & Neutralisation		
25.	Acidic solutions	contain H⁺ ions	
27.	Alkaline solutions	contain OH ⁻ ions	
28.	pH Scale	measures acidity or alkalinity of solutions	
29.	Acidic pH	lower than 7	
30.	Alkaline pH	higher than 7	
31.	Neutral pH	7	
32.	Universal Indicator	used to measure pH	
33.	pH probe	used to measure pH	
34.	lons in neutralisation	$H^+ + OH^- \rightarrow H_2O$	
	reactions		

	Strong and Weak acids (HT only)		
35.	Strong acid examples	hydrochloric, sulfuric, nitric	
36.	Weak acid examples	ethanoic, citric, carbonic	
37.	Link between pH and	as pH decreases by 1, concentration of H^+	
	concentration	ions increases by a factor of 10	
38.	Strong acids in solution	are completely ionised	
39.	Weak acids in solution	are partially ionised	

Unit 4: Chemical Changes

	Electrolysis		
40.	Electrolysis	splitting up a substance using electricity	
41.	Electrolyte	a melted or dissolved ionic substance	
42.	Electrode	charged terminals in electrolysis (usually made of carbon)	
43.	Cathode	negative Electrode	
44.	Anode	positive Electrode	
45.	PANIC	<u>P</u> ositive <u>A</u> node <u>N</u> egative <u>i</u> s <u>C</u> athode	
46.	At the cathode	metal ions (positively charged) gain electrons to become metal atoms	
47.	At the anode	non-metal ions (negatively charged) lose electrons to become non-metal atoms	
48.	Discharging	ions turning into atoms at electrodes	

	Electrolysis for metal extraction		
49.	When electrolysis is used	if the metal is more reactive than carbon	
50.	Problem of electrolysis	lots of energy is required	
51.	Aluminium extraction process	aluminium oxide is dissolved in cryolite before electrolysis is done.	
52.	Cryolite	aluminium oxide dissolves in this to lower the melting point so less energy is needed.	

	RP: Electrolysis of Aqueous Solutions		
53.	At the cathode	hydrogen will be discharged unless there is silver or copper	
54.	At the anode	oxygen will be discharged unless there is a halogen	
55.	Halogen	group 7 element (Chlorine, Bromine, Iodine)	